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Abstract. Under certain assumptions, a moving camera can be self-calibrated
solely on the basis of instantaneous optical flow. However, due to a fundamental
indeterminacy of scale, instantaneous optical flow is insufficient to determine the
magnitude of the camera’s translational velocity. This is equivalent to the baseline
length indeterminacy encountered in conventional stereo self-calibration. In this
paper we show that if the camera is calibrated in a certain weak sense, then,
by using time-varying optical flow, the velocity of the camera may be uniquely
determined relative to its initial velocity. This result enables the calculation of
the camera’s trajectory through the scene over time. A closed-form solution is
presented in the continuous realm, and its discrete analogue is experimentally
validated.

1 Introduction

It is well known that, under certain assumptions, a camera moving smoothly through a sta-
tionary environment can be self-calibrated based on instantaneous optical flow. However,
because of a fundamental indeterminacy of scale, instantaneous optical flow is insuffi-
cient to determine the magnitude of the camera’s instantaneous translational velocity.

The aim of this paper is to show that if a point in the static scene is tracked over a
period of time as part of time-varying optical flow and if the camera is calibrated in a
certain weak sense, then successive translational speeds of the camera evolve in a way
that is uniquely determined by the camera’s initial translational speed. A closed-form
solution is presented in the continuous realm, and its discrete analogue is experimentally
validated.

2 Camera and Image Settings

Consider a full-perspective, pinhole camera undergoing smooth motion in a stationary
world. Associate with the camera a 3D coordinate frame such that:

– the frame’s origin coincides with the camera’s optical centre C,
– two basis vectors span the focal plane,
– the other basis vector coincides with the optical axis.

Let v = [v1, v2, v3]T and ω = [ω1, ω2, ω3]T specify the camera’s instantaneous trans-
lational velocity and instantaneous angular velocity with respect to the camera frame.
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Let P be a static point in space. Suppose that the vector connecting C with P has the
coordinates x = [x1, x2, x3]T with respect to the camera frame. As the camera moves,
the position of P relative to the camera frame will change and will be recorded in the
function t �→ x(t). The evolution of the relative position is governed by the equation

ẋ + ω̂x + v = 0, (1)

where ω̂ is defined as

ω̂ =

⎡

⎣

0 −ω3 ω2
ω3 0 −ω1

−ω2 ω1 0

⎤

⎦

(cf. [1]). Let f be the focal length of the camera. Let p = [p1, p2, p3]T be the vector
of the coordinates of the perspective projection of P , through C, onto the image plane
{x ∈ R

3 : x3 = −f}, relative to the camera frame. Then

p = −f
x

x3
. (2)

To account for the geometry of the image, we introduce a separate, 2D coordinate
frame in the image plane, with two basis vectors aligned with rows and columns of
pixels, and with the origin located in one of the four corners of the rectangular image
boundary. In the case of rectangular image pixels, it is natural to assume that each of
the image frame basis vectors is proportional to one of the two vectors of the camera
frame spanning the focal plane. The corresponding proportionality coefficients s1 and
s2 characterise the pixel sizes in the basis directions, expressed in length units of the
camera frame. If an image point has coordinates p = [p1, p2, −f ]T and [m1, m2]T

relative to the camera and image frames, respectively, and if m = [m1, m2, 1]T , then

p = Am, (3)

where A is a 3×3 invertible matrix called the intrinsic-parameter matrix. With [i1, i2]T

the coordinates of the principal point (at which the optical axis intersects the image
plane) in the image frame, A takes the form

A =

⎡

⎣

s1 0 −s1i1
0 s2 −s1i2
0 0 −f

⎤

⎦.

In particular, if pixels are square with unit length, then A is given by

A =

⎡

⎣

1 0 −i1
0 1 −i2
0 0 −f

⎤

⎦. (4)

When pixels are non-rectangular, eq. (3) still applies but A takes a more complicated
form accommodating an extra parameter that encodes shear in the camera axes (see [2,
Section 3]).

With time t varying, the function t �→ p(t) describes the changing position of the
image of P in the camera frame, and the function t �→ ṗ(t) records the rate of change.
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Likewise, the function t �→ m(t) describes the changing position of the image of P in
the image frame, and the function t �→ ṁ(t) records the corresponding rate of change.

For a given time instant t, any set of length 6 flow vectors [m(t)T , ṁ(t)T ]T —each
vector corresponding to a point P from a set P of stationary points in the scene—is
termed an instantaneous true image velocity field. Similarly, for a given time interval
[a, b], any set of trajectories of the form t �→ [m(t)T , ṁ(t)T ]T with t ∈ [a, b]—each
trajectory corresponding to a point P from a set P of stationary points in the scene—is
called a time-varying true image velocity field. As is customary, we shall identify an
image velocity field with an appropriate observed image velocity field or optical flow
field (see [3, Chapter 12]).

The terms “instantaneous optical flow field” and “time-varying flow field” are em-
ployed even if the underlying set P contains a small number of elements. In particular,
P can be reduced to a single point.

The velocities v and ω are examples of so-called extrinsic parameters of the camera.
Another example of an extrinsic parameter is the projective form π(v) of v, defined as
the composite ratio

π(v) = (v1 : v2 : v3)

provided v �= 0. As is clear, π(v) captures the direction of v.
A camera for which the intrinsic parameters (encoded in A) and the extrinsic pa-

rameters v and ω are known will be referred to as strongly calibrated. A camera for
which the intrinsic parameters and the extrinsic parameters π(v) and ω are known will
be termed weakly calibrated. Strong calibration is typically performed using equipment
external to the camera. In contrast, the process of self-calibration is carried out using
purely image-based information and results in weak calibration (cf. [1, 4, 5]).

Assuming that v �= 0, the focus of expansion (FOE), or instantaneous epipole, of
the image is the image point whose coordinate representation p in the camera frame
is a multiple of v—see [6, Subsection 12.3.1 C] for a discussion of certain subtleties
involved in this definition. A moment’s reflection reveals that an image point p is not
the FOE if and only if

v̂p �= 0. (5)

3 Determining Relative Translational Speed

3.1 Theoretical Result

In reconstructing a scene from instantaneous optical flow seen by a weakly calibrated
camera, the magnitude ‖v‖ of the translational velocity determines the scale of the
reconstruction; here, of course, ‖ · ‖ denotes the Euclidean length of 3-vectors. It is
not possible, however, to recover this velocity magnitude, or translational speed, from
image-based information and a symbolic value must be chosen to set the reconstruc-
tion scale. The fact that any positive value may be selected reflects the inherent scale
indeterminacy of the projective interpretation of optical flow [1].

Suppose that a time-varying optical flow field is given over a period of time [a, b]. It is
a priori conceivable that the corresponding scale factor may change in an uncontrollable
way from one time instant to another—see comments in [7, Section 9]. However, as we
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show below, this indeterminacy can be significantly reduced if a single point in the
static scene is tracked over the entire period [a, b]. A single trajectory in a time-varying
optical flow field suffices to determine the relative translational speed ‖v(t)‖/‖v(a)‖
for all t ∈ [a, b], with the consequence that the speed ‖v(t)‖ is uniquely determined for
each t ∈ [a, b] once the initial speed ‖v(a)‖ is fixed.

The precise formulation of our result is as follows:

Theorem. Assume that a weakly calibrated camera moves smoothly so that v(t) �= 0
for each t ∈ [a, b]. Suppose that, for each t ∈ [a, b], a trajectory t �→ [m(t)T , ṁ(t)T ]T

represents a moving image of a point in the static scene. Suppose, moreover, that,
for each t ∈ [a, b], m(t) is not the FOE. Then the relative translational speed
‖v(t)‖/‖v(a)‖ is uniquely determined for all t ∈ [a, b]. More specifically, there ex-
ists a function g : [a, b] → R such that, for each t ∈ [a, b], g(t) is explicitly expressible
in terms of A(t), Ȧ(t), π(v(t)), ω(t), m(t) and ṁ(t), and such that

‖v(t)‖
‖v(a)‖ = exp

(∫ t

a

g(u) du

)

. (6)

Note. The exact form of g will be given in the course of the proof.

Proof. Given t ∈ [a, b], we first find the value of p(t) by applying (3) to m(t). We next
use the equation

ṗ = Ȧm + Aṁ,

obtained by differentiating both sides of (3), to determine ṗ(t) from m(t) and ṁ(t).
Note that (2) can be equivalently rewritten as

x = −x3p

f
. (7)

Differentiating both sides of the latter equation, we obtain

ẋ =
x3ḟ − ẋ3f

f2 p − x3

f
ṗ. (8)

Substituting (7) and (8) into (1), we find that

x3
(

ḟp − f(ṗ + ω̂p)
)

− ẋ3fp + f2v = 0. (9)

Omitting in notation the dependence upon t, define

k = v̂(ḟp − f(ṗ + ω̂p)),
l = f v̂p.

Applying v̂ to both sides of (9) and taking into account that v̂v = 0, we see that

x3k − ẋ3l = 0.

Hence
ẋ3

x3
=

lT k

‖l‖2 . (10)
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For the last formula to be meaningful the denominators on both sides of (10) have to
be non-zero. Without loss of generality we may always assume that x3 > 0, as this
assumption reflects the fact that the scene is in front of the camera. On the other hand,
since p is not the FOE, it follows from (5) that l �= 0.

If v is multiplied by a non-zero scalar factor, then both k and l are multiplied by the
same factor, and consequently lT k/‖l‖2 does not change. As a result, lT k/‖l‖2 can be
regarded as a function of π(v)—not just v—and ω, f , ḟ , p, ṗ, and treated as known.
Define

q =
1
f2

(

lT k

‖l‖2 fp − ḟp + f(ṗ + ω̂p)
)

.

Clearly, being a composite of known entities, q can be regarded as known. In view of
(9) and (10), we have

v = x3q

and further
‖v‖ = |x3| ‖q‖. (11)

To simplify the notation, let v = ‖v‖ and q = ‖q‖. Taking the logarithmic derivative
of both sides of (11) and next using (10), we deduce that

v̇

v
=

ẋ3

x3
+

q̇

q
=

lT k

‖l‖2 +
q̇

q
. (12)

Let

g =
lT k

‖l‖2 +
q̇

q
.

Since lT k/‖l‖2 is known and since q and q̇ are known too (both functions being deriv-
able from the known function q), one can regard g as known. In view of (12), we finally
find that

v(t)
v(a)

= exp
(∫ t

a

g(u) du

)

,

which, of course, is the desired formula (6) for the relative translational speed. ��

3.2 Computational Aspects

The result given above is applicable only in the case where the camera is weakly cal-
ibrated. There are many means by which this information may be recovered, and the
method presented here will only be of interest in situations when this form of calibra-
tion information is available.

One method by which the required weak calibration of a moving camera may be
achieved is as follows. If we assume that A takes the form given in (4) (so that pixels
are square and have unit length) with the known principal point [i1, i2]T , then the only
unknown intrinsic parameters are the focal length and its derivative. These parameters,
along with the required instantaneous velocities, can be estimated on the basis of an
instantaneous optical flow field comprising at least eight elements [mT

i , ṁT
i ]T (i ≥ 8).

A first step is the estimation, up to a common scalar factor, of two matrices, a symmetric
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matrix C and an antisymmetric matrix W , entering the differential epipolar equation
for uncalibrated optical flow

mT Wṁ + mT Cm = 0

and the cubic constraint1

wT Cw = 0,

with w such that W = ŵ. Once the composite ratio

π(C, W ) = (c11 : c12 : c13 : c22 : c23 : c33 : w1 : w2 : w3)

is estimated, recovering f and ḟ proceeds by exploiting explicit formulae that involve
π(C, W ) [1]. Estimation of π(C, W ) can be done by applying one of a host of meth-
ods available [8].

To show how this approach works in practice, suppose that a set of at least eight
points is tracked simultaneously over time. For each i = 1, . . . , I with I ≥ 8,
let {mi(tj)}n

j=1 be a sequence of images of the ith point in the scene, and let
{ṁi(tj)}n−1

j=1 , ṁi(tj) = (tj+1 − tj)−1(mi(tj+1) − mi(tj)), be the sequence of
corresponding image velocities. At each time instant tj with j < n, the camera
is first weakly calibrated based on the set {[mi(tj)T , ṁi(tj)T ]T }N

i=1 of all current
flow vectors. Then, for each i, a value gi(tj) is evolved based on the ith flow vec-
tor [mi(tj)T , ṁi(tj)T ]T . In absence of information on the reliability of the gi(tj), a
simple average ḡ(tj) = I−1 ∑I

i=1 gi(tj) is next formed. Finally, the current relative
translational velocity ‖v(tj)‖/‖v(t1)‖ is updated to

‖v(tj+1)‖
‖v(t1)‖

=
‖v(tj)‖
‖v(t1)‖

exp[(ḡ(tj))(tj+1 − tj)].

4 Experimental Evaluation

In order to assess the accuracy of the method presented above synthetic testing was
carried out. The tests involved generating the equivalent of 5 seconds of video from
a moving camera and comparing the estimated and true magnitudes of the instanta-
neous translational velocity. The 5 second duration was selected as a reasonable period
over which it might be expected that all tracked points would remain visible within the
boundaries of the image. The video has been generated at the equivalent of 25 frames
per second, and the simulated motion of the camera is of the type that might be expected
of a real camera.

An optical flow field of 100 elements was generated, and Gaussian noise (mean 0,
standard deviation 0.5 pixels) added to both the location and velocity components of
each flow vector. Given that optical flow is usually calculated across the majority of the
image plane, it seems reasonable to assume that at least 100 flow vectors are available
for velocity magnitude estimation. It is important to note also that in testing the method
noise has not been added to the calibration information. The weak calibration used is

1 Note that wT Cw is a cubic polynomial in the entries of C and W .
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Fig. 1. Speed estimates for 5 seconds of video

thus “true”. This reflects the fact that we present here a method of estimating the veloc-
ity magnitude, not a method of weak calibration. Figure 1 shows the velocity magnitude
estimated using all of the available 25 frames per second, and the magnitude estimated
using only 2.5 frames per second. The result based on the lower frame rate is intended
to show the degradation in performance in the case where a full weak calibration is not
available for each frame of the video. The velocity magnitudes are represented in units
of pixels per frame of video (at 25 frames per second).

The graph shows that, despite small variations in the estimated magnitude, on av-
erage the method performs very well. The maximum speed error in the 25 frames per
second estimate is 0.93%. The decreased frame rate of the 2.5 frames per second test
causes a decrease in accuracy as would be expected. The maximum error in the 2.5
frames per second estimate is 1.5%.

5 Conclusion

A novel method was presented for incremental recovery of the magnitude of a cam-
era’s translational velocity from time-varying optical flow, relative to an arbitrarily fixed
starting value. Results of preliminary synthetic testing confirmed the validity of the ap-
proach. Future work will explore how the method may be improved via techniques
such as Kalman-like smoothing, use of multiple optical-flow trajectories, and reduction
of error accumulation effects.
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